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Abstract. Deep neural networks are vulnerable to adversarial attacks,
in which imperceptible perturbations to their input lead to erroneous
network predictions. This phenomenon has been extensively studied in the
image domain, and has only recently been extended to 3D point clouds.
In this work, we present novel data-driven adversarial attacks against
3D point cloud networks. We aim to address the following problems
in current 3D point cloud adversarial attacks: they do not transfer well
between different networks, and they are easy to defend against via simple
statistical methods. To this extent, we develop a new point cloud attack
(dubbed AdvPC) that exploits the input data distribution by adding an
adversarial loss, after Auto-Encoder reconstruction, to the objective it
optimizes. AdvPC leads to perturbations that are resilient against current
defenses, while remaining highly transferable compared to state-of-the-
art attacks. We test AdvPC using four popular point cloud networks:
PointNet, PointNet++ (MSG and SSG), and DGCNN. Our proposed
attack increases the attack success rate by up to 40% for those transferred
to unseen networks (transferability), while maintaining a high success
rate on the attacked network. AdvPC also increases the ability to break
defenses by up to 38% as compared to other baselines on the ModelNet40
dataset. The code is available at https://github.com/ajhamdi/AdvPC.

1 Introduction

Deep learning has shown impressive results in many perception tasks. Despite its
performance, several works show that deep learning algorithms can be susceptible
to adversarial attacks. These attacks craft small perturbations to the inputs that
push the network to produce incorrect outputs. There is significant progress made
in 2D image adversarial attacks, where extensive work shows diverse ways to
attack 2D neural networks [23,6,11,18,4,2,35,8,7]. In contrast, there is little focus
on their 3D counterparts [31,38,37,25]. 3D point clouds captured by 3D sensors
like LiDAR are now widely processed using deep networks for safety-critical
applications, including but not limited to self-driving [3,27]. However, as we show
in this paper, 3D deep networks tend to be vulnerable to input perturbations, a
fact that increases the risk of using them in such applications. In this paper, we
present a novel approach to attack deep learning algorithms applied to 3D point
clouds with a primary focus on attack transferability between networks.
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Fig. 1: Transferable Adversarial Perturbations on 3D point clouds: Generating
adversarial attacks to fool PointNet [21](PN) by perturbing a Table point cloud. The
perturbed 3D object not only forces PointNet to predict an incorrect class, but also
induces misclassification on other unseen 3D networks (PointNet++ [22], DGCNN [29])
that are not involved in generating the perturbation. Fooling unseen networks poses a
threat to 3D deep vision models.

The concept of attack transferability has been extensively studied in the
2D image domain [17,19,20]. Transferability allows an adversary to fool any
network, without access to the network’s architecture. Clearly, transferable
attacks pose a serious security concern, especially in the context of deep learning
model deployment. In this work, the goal is to generate adversarial attacks with
network-transferability, i.e. the attack to a given point cloud is generated using
a single and accessible victim network, and the perturbed sample is directly
applied to an unseen and inaccessible transfer network.Accessibility here refers
to whether the parameters and architecture of the network are known, while
optimizing the attack (white-box). Fig. 1 illustrates the concept of transferability.
The perturbation generated by our method for a 3D point cloud not only flips
the class label of a victim network to a wrong class (i.e. it is adversarial), but it
also induces a misclassification for the transfer networks that are not involved in
generating the perturbation (i.e. it is transferable).

Very few adversarial attacks have been developed for 3D point clouds. The first
method was introduced by Xiang et. al. [31] and it proposes point perturbation
and adversarial point generation as two attack modes. More recently, Tsai et.
al. [25] proposed to make point cloud attacks more smooth and natural by
incorporating a K-Nearest Neighbor (KNN) loss on the points, thus making the
attacks physically realizable. We identify two main shortcomings in current 3D
adversarial perturbations methods [31,25]. First, their attacks are unsuccessful in
the presence of simple defenses, such as Statistical Outlier Removal [38]. Second,
they are limited to the victim network and do not transfer well to other networks
[31]. In contrast, our work not only focuses on adversarial perturbations that are
significantly more resilient against currently available point cloud defenses, but
also on those that transfer well between different point cloud networks.
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To generate more transferable attacks, we use a point cloud Auto-Encoder
(AE), which can effectively reconstruct the unperturbed input after it is perturbed,
and then add a data adversarial loss. We optimize the perturbation added to the
input to fool the classifier before it passes through the AE (regular adversarial
loss) and after it passes through the AE (data adversarial loss). In doing so, the
attack tends to be less dependent on the victim network, and generalizes better
to different networks. Our attack is dubbed “AdvPC”, and our full pipeline is
optimized end-to-end from the classifier output to the perturbation. The AE
learns the natural distribution of the data to generalize the attack to a broader
range of unseen classifiers [26], thus making the attack more dangerous. Our
attacks surpass state-of-the-art attacks [31,25] by a large margin (up to 40%) on
point cloud networks operating on the standard ModelNet40 dataset [30] and for
the same maximum allowed perturbation norms (norm-budgets).
Contributions. Our contributions are two-fold. (1) We propose a new pipeline
and loss function to perform transferable adversarial perturbations on 3D point
clouds. By introducing a data adversarial loss targeting the victim network
after reconstructing the perturbed input with a point cloud AE, our approach
can be successful in both attacking the victim network and transferring to
unseen networks. Since the AE is trained to leverage the point cloud data
distribution, incorporating it into the attack strategy enables better transferability
to unseen networks. To the best of our knowledge, we are the first to introduce
network-transferable adversarial perturbations for 3D point clouds. (2) We
perform extensive experiments under constrained norm-budgets to validate the
transferability of our attacks. We transfer our attacks between four point cloud
networks and show superiority against the state-of-the-art. Furthermore, we
demonstrate how our attacks outperform others when targeted by currently
available point cloud defenses.

2 Related Work

2.1 Deep Learning for 3D Point Clouds

PointNet [21] paved the way as the first deep learning algorithm to operate
directly on 3D point clouds. PointNet computes point features independently, and
aggregates them using an order invariant function like max-pooling. An update
to this work was PointNet++ [22], where points are aggregated at different 3D
scales. Subsequent works focused on how to aggregate more local context [5] or on
more complex aggregation strategies like RNNs [9,33]. More recent methods run
convolutions across neighbors of points, instead of using point-wise operations
[29,15,24,13,12,15,28,14]. Contrary to PointNet and its variants, these works
achieve superior recognition results by focusing on local feature representation.
In this paper and to evaluate/validate our adversarial attacks, we use three point-
wise networks, PointNet [21] and PointNet++ [22] in single-scale (SSG) and
multi-scale (MSG) form, and a Dynamic Graph convolutional Network, DGCNN
[29]. We study the sensitivity of each network to adversarial perturbations and
show the transferability of AdvPC attacks between the networks.
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2.2 Adversarial Attacks

Pixel-based Adversarial Attacks. The initial image-based adversarial attack
was introduced by Szegedy et. al. [23], who cast the attack problem as optimization
with pixel perturbations being minimized so as to fool a trained classifier into
predicting a wrong class label. Since then, the topic of adversarial attacks has
attracted much attention [6,11,18,4,16]. More recent works take a learning-based
approach to the attack [19,20,36]. They train a neural network (adversary) to
perform the attack and then use the trained adversary model to attack unseen
samples. These learning approaches [19,20,36] tend to have better transferability
properties than the optimizations approaches [6,11,18,4,16], while the latter tend
to achieve higher success rates on the victim networks. As such, our proposed
AdvPC attack is a hybrid approach, in which we leverage an AE to capture
properties of the data distribution but still define the attack as an optimization
for each sample. In doing so, AdvPC captures the merits of both learning and
optimization methods to achieve high success rates on the victim networks as
well as better transferability to unseen networks.

Adversarial Attacks in 3D. Several adversarial attacks have moved beyond
pixel perturbations to the 3D domain. One line of work focuses on attacking
image-based CNNs by changing the 3D parameters of the object in the image,
instead of changing the pixels of the image [8,35,2,7,32]. Recently, Xiang et. al. [31]
developed adversarial perturbations on 3D point clouds, which were successful in
attacking PointNet [21]; however, this approach has two main shortcomings. First,
it can be easily defended against by simple statistical operations [38]. Second, the
attacks are non-transferable and only work on the attacked network [31,38]. In
contrast, Zheng et. al. [37] proposed dropping points from the point cloud using a
saliency map, to fool trained 3D deep networks. As compared to [37], our attacks
are modeled as an optimization on the additive perturbation variable with a
focus on point perturbations instead of point removal. As compared to [31], our
AdvPC attacks are significantly more successful against available defenses and
more transferable beyond the victim network, since AdvPC leverages the point
cloud data distribution through the AE. Concurrent to our work is the work of
Tsai et. al. [25], in which the attack is crafted with KNN loss to make smooth
and natural shapes. The motivation of their work is to craft natural attacks on
3D point clouds that can be 3D-printed into real objects. In comparison, our
novel AdvPC attack utilizes the data distribution of point clouds by utilizing an
AE to generalize the attack.

Defending Against 3D Point Cloud Attacks. Zhou et. al. [38] proposed
a Statistical Outlier Removal (SOR) method as a defense against point cloud
attacks. SOR uses KNN to identify and remove point outliers. They also propose
DUP-Net, which is a combination of their SOR and a point cloud up-sampling
network PU-Net [34]. Zhou et. al. also proposed removing unnatural points by
Simple Random Sampling (SRS), where each point has the same probability of
being randomly removed. Adversarial training on the attacked point cloud is
also proposed as a mode of defense by [31]. Our attacks surpass state-of-the-art
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Fig.2: AdvPC Attack Pipeline: We optimize for the constrained perturbation
variable A to generate the perturbed sample X’ = X + A. The perturbed sample fools a
trained classifier F (i.e. F(X") is incorrect), and at the same time, if the perturbed sample
is reconstructed by an Auto-Encoder (AE) G, it too fools the classifier (i.e. F(G(X’))
is incorrect). The AdvPC loss for network F is defined in Eq (6) and has two parts:
network adversarial loss (purple) and data adversarial loss (green). Dotted lines are
gradients flowing to the perturbation variable A.

attacks [31,25] on point cloud networks by a large margin (up to 38%) on the
standard ModelNet40 dataset [30] against the aforementioned defenses [38].

3 Methodology

The pipeline of AdvPC is illustrated in Fig. 2. It consists of an Auto-Encoder (AE)
G, which is trained to reconstruct 3D point clouds and a point cloud classifier
F. We seek to find a perturbation variable A added to the input X to fool F
before and after it passes through the AE for reconstruction. The setup makes
the attack less dependent on the victim network and more dependent on the
data. As such, we expect this strategy to generalize to different networks. Next,
we describe the main components of our pipeline: 3D point cloud input, AE, and
point cloud classifier. Then, we present our attack setup and loss.

3.1 AdvPC Attack Pipeline

3D Point Clouds (X). We define a point cloud X € RV*3  as a set of N 3D
points, where each point x; € R? is represented by its 3D coordinates (z;, y;, 2;).-
Point Cloud Networks (F). We focus on 3D point cloud classifiers with a
feature max pooling layer as detailed in Eq (1), where hyp, and hcony are MLP
and Convolutional (1 x 1 or edge) layers, respectively. This produces a K-class
classifier F.

F(X) = hmp (glg}( {hconv (%i)}) (1)

Here, F : RV>*3 — RE produces the logits layer of the classifier with size K. For
our attacks, we take F to be one of the following widely used networks in the
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literature: PointNet [21], PointNet++ [22] in single-scale form (SSG) and multi-
scale form (MSG), and DGCNN [29]. Section 5.2 delves deep into the differences
between them in terms of their sensitivities to adversarial perturbations.

Point Cloud Auto-Encoder (G). An AE learns a representation of the data
and acts as an effective defense against adversarial attacks. It ideally projects a
perturbed point cloud onto the natural manifold of inputs. Any AE architecture
in point clouds can be used, but we select the one in [1] because of its simple
structure and effectiveness in recovering from adversarial perturbation. The AE
G consists of an encoding part, gencode : RV *3 — R? (similar to Eq (1)), and an
MLP decoder, gmp : R? — RY*3 | to produce a point cloud. It can be described
formally as: G(.) = gmip (gencode(.)). We train the AE with the Chamfer loss as
in [1] on the same data used to train F, such that it can reliably encode and
decode 3D point clouds. We freeze the AE weights during the optimization of
the adversarial perturbation on the input. Since the AE learns how naturally
occurring point clouds look like, the gradients updating the attack, which is also
tasked to fool the reconstructed sample after the AE, actually become more
dependent on the data and less on the victim network. The enhanced data
dependency of our attack results in the success of our attacks on unseen transfer
networks besides the success on the victim network. As such, the proposed
composition allows the crafted attack to successfully attack the victim classifier,
as well as, fool transfer classifiers that operate on a similar input data manifold.

3.2 AdvPC Attack Loss

Soft Constraint Loss. In AdvPC attacks, like the ones in Fig. 3, we focus
solely on perturbations of the input. We modify each point x; by a an addictive
perturbation variable §;. Formally, we define the perturbed point set X’/ =
X + A, where A € RV*3 is the perturbation parameter we are optimizing for.
Consequently, each pair (x;,x}) are in correspondence. Adversarial attacks are
commonly formulated as in Eq (2), where the goal is to find an input perturbation
A that successfully fools F into predicting an incorrect label ¢, while keeping
X' and X close under distance metric D: RV*3 x RV*3 4 R,

mAin DX, X))  st. {argmax F(X/)Z} =t (2)
The formulation in Eq (2) can describe targeted attacks (if ¢ is specified
before the attack) or untargeted attacks (if ¢’ is any label other than the
true label of X). We adopt the following choice of ¢’ for untargeted attacks:
t' = [argmax;_ . F(X’);]. Unless stated otherwise, we primarily use untar-
geted attacks in this paper. As pointed out in [4], it is difficult to directly
solve Eq (2). Instead, previous works like [31,25] have used the well-known
C&W formulation, giving rise to the commonly known soft constraint attack:
mina  fy (F(X)+AD (X, X’) where fi (F(X')) is the adversarial loss function
defined on the network F to move it to label ¢’ as in Eq (3).

fe (F(X')) = max (H;gx (F(X');) —F (X"), + 5, 0) > (3)
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Fig. 3: Examples of AdvPC Attacks: Adversarial attacks are generated for victim
networks PointNet, PointNet ++ (MSG/SSG) and DGCNN using AdvPC. The unper-
turbed point clouds are in black (top) while the perturbed examples are in blue (bottom).
The network predictions are shown under each point cloud. The wrong prediction of
each perturbed point cloud matches the target of the AdvPC attack.

where £ is a loss margin. The 3D-Adv attack [31] uses ¢ for D (X, X’), while the
KNN Attack [25] uses Chamfer Distance.
Hard Constraint Loss. An alternative to Eq (2) is to put D(X,X’) as a

hard constraint, where the objective can be minimized using Projected Gradient
Descent (PGD) [11,16] as follows.

min fr (F(X') st DX, X)<e (4)

Using a hard constraint sets a limit to the amount of added perturbation in
the attack. This limit is defined by € in Eq (4), which we call norm-budget in
this work. Having this bound ensures a fair comparison between different attack
schemes. We compare these schemes by measuring their attack success rate at
different levels of norm-budget. Using PGD, the above optimization in Eq (4) with
¢, distance Dy, (X, X') can be solved by iteratively projecting the perturbation
A onto the ¢, sphere of size ¢, after each gradient step such that: A, =
II, (A —nV a, fv (F(X')),¢p). Here, II, (A, €p,) projects the perturbation A
onto the £, sphere of size €,, and 7n is a step size. The two most commonly
used ¢, distance metrics in the literature are f», which measures the energy of
the perturbation, and /.., which measures the maximum point perturbation of
each 0; € A. In our experiments, we choose to use the /., distance defined as
Dy (X, X') = max; ||0;] ., The projection of A onto the £, sphere of size e
is: [ (A, €x) = SAT.__(0;), Vo; € A, where SAT.__ (d;) is the element-wise
saturation function that takes every element of vector §; and limits its range to
[—€00s €0o]- Norm-budget €, is used throughout the experiments in this work.
In supplement, we detail our formulation when ¢5 is used as the distance
metric and report similar superiority over the baselines just as the /., results.
For completeness, we also show in the supplement the effect of using different
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distance metrics (¢, Chamfer, and Earth Mover Distance) as soft constraints on
transferability and attack effectiveness.

Data Adversarial Loss. The objectives in Eq (2, 4) focus solely on the network
F. We also want to add more focus on the data in crafting our attacks. We do
so by fooling F using both the perturbed input X’ and the AE reconstruction
G(X') (see Fig. 2). Our new objective becomes:

3
7 (3

m&n D(X,X') st [argmax F(&'),] =t [argmax F(G(X'));] =t" (5)

Here, t” is any incorrect label ¢ # argmax; F (X), and ¢’ is just like Eq (2). The
second constraint ensures that the prediction of the perturbed sample after the
AE differs from the true label of the unperturbed sample. Similar to Eq (2), this
objective is hard to optimize, so we follow similar steps as in Eq (4) and optimize
the following objective for AdvPC using PGD (with £, as the distance metric):

min (1) fu (FX) +7 for (F(G(X)) st Doy (X, &) S ()

Here, f is as in Eq (3), while « is a hyper-parameter that trades off the attack’s
success before and after the AE . When v = 0, the formulation in Eq (6) becomes
Eq (4). We use PGD to solve Eq (6) just like Eq (4). We follow the same
procedures as in [31] when solving Eq (6) by keeping a record of any A that
satisfies the constraints in Eq (5) and by trying different initializations for A.

4 Experiments

4.1 Setup

Dataset and Networks. We use ModelNet40 [30] to train the classifier network
(F) and the AE network (G), as well as test our attacks. ModelNet40 contains
12,311 CAD models from 40 different classes. These models are divided into 9,843
for training and 2,468 for testing. Similar to previous work [38,31,37], we sample
1,024 points from each object. We train the F victim networks: PointNet[21],
PointNet++ in both Single-Scale (SSG) and Multi-scale (MSG) [22] settings, and
DGCNN [29]. For a fair comparison, we adopt the subset of ModelNet40 detailed
in [31] to perform and evaluate our attacks against their work (we call this the
attack set). In the attack set, 250 examples are chosen from 10 ModelNet40
classes. We train the AE using the full ModelNet40 training set with the Chamfer
Distance loss and then fix the AE when the attacks are being generated.

Adversarial Attack Methods. We compare AdvPC against the state-of-the-
art baselines 3D-Adv [31] and KNN Attack [25]. For all attacks, we use Adam
optimizer [10] with learning rate n = 0.01, and perform 2 different initializations
for the optimization of A (as done in [31]). The number of iterations for the
attack optimization for all the networks is 200. We set the loss margin x = 30 in
Eq (3) for both 3D-Adv [31] and AdvPC and k = 15 for KNN Attack [25] (as
suggested in their paper). For other hyperparameters of [31,25], we follow what
is reported in their papers. We pick v = 0.25 in Eq (6) for AdvPC because it
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Fig. 4: Transferability Across Different Norm-Budgets: Here, the victim network
is DGCNN [29] and the attacks are optimized using different €., norm-budgets. We
report the attack success on DGCNN and on the transfer networks (PointNet, PointNet
++ MSG, and PointNet++ SSG). We note that our AdvPC transfers better to the other
networks across different e, as compared to the baselines 3D-Adv[31] and KNN Attack
[25]. Similar plots for the other victim networks are provided in the supplement.

strikes a balance between the success of the attack and its transferability (refer
to Section 5.1 for details). In all of the attacks, we follow the same procedure as
[31], where the best attack that satisfies the objective during the optimization
is reported. We add the hard /., projection IT, (A, €x) described in Section 3
to all the methods to ensure fair comparison on the same norm-budget €,,. We
report the best performance of the baselines obtained under this setup.

Transferability. We follow the same setup as [19,20] by generating attacks
using the constrained /., metric and measure their success rate at different
norm-budgets €5, taken to be in the range [0,0.75]. This range is chosen because
it enables the attacks to reach 100% success on the victim network, as well as
offer an opportunity for transferability to other networks. We compare AdvPC
against the state-of-the-art baselines [31,25] under these norm-budgets (e.g. see
Fig. 4 for attacking DGCNN). To measure the success of the attack, we compute
the percentage of samples out of all attacked samples that the victim network
misclassified. We also measure transferability from each victim network to the
transfer networks. For each pair of networks, we optimize the attack on one
network (victim) and measure the success rate of this optimized attack when
applied as input to the other network (transfer). We report these success rates for
all network pairs. No defenses are used in the transferability experiment. All the
attacks performed in this section are untargeted attacks (following the convention
for transferability experiments [31]).

Attacking the Defenses. We also analyze the success of our attacks against
point cloud defenses. We compare AdvPC attacks and the baselines [31,25] against
several defenses used in the point cloud literature: SOR, SRS, DUP-Net [38], and
Adversarial Training [31]. We also add a newly trained AE (different from the one
used in the AdvPC attack) to this list of defenses. For SRS, we use a drop rate
of 10%, while in SOR, we use the same parameters proposed in [38]. We train
DUP-Net on ModelNet40 with an up-sampling rate of 2. For Adversarial Training,
all four networks are trained using a mix of the training data of ModelNet40 and
adversarial attacks generated by [31]. While these experiments are for untargeted
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- - €00 = 0.18 €0 = 0.45
Victim PN+ PN4+ PN+ PN4+
Attack |PN DGCNN|PN DGCNN
Network ac (MSG) (SSG) (MSG) (SSG)
3D-Adv [31] [100 84 104 68 |100 88 9.6 8.0
PN KNN[25 |100 96 108 60 |100 96 84 6.4

AdvPC (Ours)[98.8 20.4 27.6 22.4 (988 18.0 26.8 20.4
3D-Adv [31] | 6.8 100 28.4 11.2 7.2 100 29.2 11.2

PN

(MS+G-§ KNN [25] |6.4 100 22.0 8.8 6.4 100 23.2 7.6
AdvPC (Ours)|13.2 97.2 54.8 39.6 |[18.4 98.0 58.0 39.2

PN Pl (64 82 a0 64 o8 7o b0 oo

AdvPC (Ours)(12.0 27.2  99.2 22.8 [14.0 30.8 99.2 27.6

3D-Adv [31] | 9.2 11.2 31.2 100 9.6 128 30.4 100
DGCNN KNN [25] 72 9.6 14.0 99.6 6.8 10.0 11.2 99.6
AdvPC (Ours)[19.6 46.0 64.4 94.8 |32.8 48.8 64.4 97.2

Table 1: Transferability of Attacks: We use norm-budgets (max £ norm allowed
in the perturbation) of €sc = 0.18 and es = 0.45 . All the reported results are the
untargeted Attack Success Rate (higher numbers are better attacks). Bold numbers
indicate the most transferable attacks. Our attack consistently achieves better transfer-
ability than the other attacks for all networks, especially on DGCNN [29]. For reference,
the classification accuracies on unperturbed samples for networks PN, PN++(MSG),
PN++(SSG) and DGCNN are 92.8%, 91.5%, 91.5%, and 93.7%, respectively.

attacks, we perform similar experiments under targeted attacks and report the
results in supplement for reference and completeness.

4.2 Results

We present quantitative results that focus on two main aspects. First, we show the
transferable power of AdvPC attacks to different point cloud networks. Second,
we highlight the strength of AdvPC under different point cloud defenses.

Transferability. Table 1 reports transferability results for e, = 0.18 and €, =
0.45 and compares AdvPC with the baselines [31,25]. The value €5, = 0.18
is chosen, since it allows the DGCNN attack to reach maximum success (see
Section 5.2), and the value o, = 0.45 is arbitrarily chosen to be midway in the
remaining range of €. It is clear that AdvPC attacks consistently beat the
baselines when transferring between networks (up to 40%). Our method shows
substantial gains in the case of DGCNN. We also report transferability results
for a range of €5 values in Fig. 4 when the victim network is DGCNN, and the
attacks transferred to all other networks. In supplement, we show the same plots
when the victim network is taken to be PN and PN++. To represent all these
transferability curves compactly, we aggregate their results into a Transferability
Matrix. Every entry in this matrix measures the transferability from the victim
network (row) to the transfer network (column), and it is computed as the
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Fig. 5: Transferability Matrix: Visualizing the overall transferability for 3D-Adv
[31] (left), KNN Attack [25] (middle), and our AdvPC (right). Elements in the same
row correspond to the same victim network used in the attack, while those in the same
column correspond to the network that the attack is transferred to. Each matrix element
measures the average success rate over the range of e-, for the transfer network. We
expect the diagonal elements of each transferability matrix (average success rate on the
victim network) to have high values, since each attack is optimized on the same network
it is transferred to. More importantly, brighter off-diagonal matrix elements indicate
better transferability. We observe that our proposed AdvPC attack is more transferable
than the other attacks and that DGCNN is a more transferable victim network than the
other point cloud networks. The transferability score under each matrix is the average
of the off-diagonal matrix values, which summarizes overall transferability for an attack.

average success rate of the attack evaluated on the transfer network across all €4,
values. This value reflects how good the perturbation is at fooling the transfer
network overall. As such, we advocate the use of the transferability matrix as

a standard mode of evaluation for future work on network-transferable attacks.
In Fig. 5, we show the transferability matrices for our attack and the baselines.

AdvPC transfers better overall, since it leads to higher (brighter) off-diagonal
values in the matrix. Using the average of off-diagonal elements in this matrix
as a single scalar measure of transferability, AdvPC achieves 24.9% average
transferability, as compared to 11.5% for 3D-Adv [31] and 8.92% for KNN Attack
[25]. We note that DGCNN [29] performs best in terms of transferability and is
the hardest network to attack (for AdvPC and the baselines).

Attacking Defenses. Since DGCNN performs the best in transferability, we use
it to evaluate the resilience of our AdvPC attacks under different defenses. We

use the five defenses described in Section 4.1 and report their results in Table 2.

Our attack is more resilient than the baselines against all defenses. We note that
the AE defense is very strong against all attacks compared to other defenses [38],
which explains why AdvPC works very well against other defenses and transfers
well to unseen networks. We also observe that our attack is strong against simple
statistical defenses like SRS (38% improvement over the baselines). We report
results for other victim networks (PN and PN++) in the supplement , where
AdvPC shows superior performance against the baselines under these defenses.

11
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€00 = 0.18 €00 = 0.45

Defenses 3D-Adv KNN AdvPC | 3D-Adv KNN AdvPC

[31] [25] (ours) [31] [25] (ours)
No defense 100 99.6 94.8 100 99.6 97.2
AE (newly trained) 9.2 10.0 17.2 12.0 10.0 21.2
Adv Training [31] 7.2 7.6 39.6 8.8 7.2 42.4
SOR [38] 188 172 36.8 19.2 192  32.0
DUP Net [38] 28 28.8 43.6 28 31.2 37.2
SRS [38] 43.2 29.2 80.0 47.6 31.2 85.6

Table 2: Attacking Point Cloud Defenses: We evaluate untargeted attacks using
norm-budgets of €sc = 0.18 and €5 = 0.45 with DGCNN [29] as the victim network under
different defenses for 3D point clouds. Similar to before, we report attack success rates
(higher indicates better attack). AdvPC consistently outperforms the other attacks
[31,25] for all defenses. Note that both the attacks and evaluations are performed on
DGCNN, which has an accuracy of 93.7% without input perturbations (for reference).

5 Analysis

We perform several analytical experiments to further explore the results obtained
in Section 4.2. We first study the effect of different factors that play a role in the
transferability of our attacks. We also show some interesting insights related to
the sensitivity of point cloud networks and the effect of the AE on the attacks.

5.1 Ablation Study (hyperparameter ~)

Here, we study the effect of v used in Eq (6) on the performance of our attacks.
While varying v between 0 and 1, we record the attack success rate on the victim
network and report the transferability to all of the other three transfer networks
(average success rate on the transfer networks). We present averaged results
over all norm-budgets in Fig. 6 for the four victim networks. One observation
is that adding the AE loss with v > 0 tends to deteriorate the success rate,
even though it improves transferability. We pick v = 0.25 in our experiments to
balance success and transferability.

5.2 Network Sensitivity to Point Cloud Attacks

Fig. 7 plots the sensitivity of the various networks when they are subject to
input perturbations of varying norm-budgets €.,. We measure the classification
accuracy of each network under our AdvPC attack (v = 0.25), 3D-Adv [31], and
KNN Attack [25]. We observe that DGCNN [29] tends to be the most robust to
adversarial perturbations in general. This might be explained by the fact that the
convolution neighborhoods in DGCNN are dynamically updated across layers and
iterations. This dynamic behavior in network structure may hinder the effect of
the attack because gradient directions can change significantly from one iteration
to another. This leads to failing attacks and higher robustness for DGCNN [29].



AdvPC: Transferable Adversarial Perturbations on 3D Point Clouds
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Fig. 6: Ablation Study: Studying the effect of changing AdvPC hyperparameter () on
the success rate of the attack (left) and on its transferability (right). The transferability
score reported for each victim network is the average success rate on the transfer
networks averaged across all different norm-budgets €. We note that as v increases,
the success rate of the attack on the victim network drops, and the transferability varies
with . We pick v = 0.25 in all of our experiments.
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Fig. 7: Sensitivity of Architectures: We evaluate the sensitivity of each of the four
networks for increasing norm-budget. For each network, we plot the classification accu-
racy under 3D-Adv perturbation [31] (left), KNN Attack [25] (middle), and our AdvPC
attack (right). Overall, DGCNN [29] is affected the least by adversarial perturbation.

5.3 Effect of the Auto-Encoder (AE)

In Fig. 8, we show an example of how AE reconstruction preserves the details of
the unperturbed point cloud and does not change the classifier prediction. When a
perturbed point cloud passes through the AE, it recovers a natural-looking shape.
The AE’s ability to reconstruct natural-looking 3D point clouds from various
perturbed inputs might explain why it is a strong defense against attacks in Table
2. Another observation from Fig. 8 is that: when we fix the target ¢’ and do not
enforce a specific incorrect target t” (i.e. untargeted attack setting) for the data
adversarial loss on the reconstructed point cloud in the AdvPC attack (Eq (6)),
the optimization mechanism tends to pick ¢ to be a similar class to the correct
one. For example, a Toilet point cloud perturbed by AdvPC can be transformed
into a Chair (similar in appearance to a toilet), if reconstructed by the AE. This
effect is not observed for the other attacks [31,25], which do not consider the

13
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unperturbed
point cloud

3D-adv [31] KNN [25] AdvPC (ours)

before AE after AE |before AE after AE |before AE after AE |before AE after AE

PN: PN: PN: PN: PN: PN: PN: PN:
Toilet v/ Toilet v | Bed 8 Toilet v/ | Bed 8 Toilet v/ | Bed 8 Chair %

Fig. 8: Effect of the Auto-Encoder (AE): The AE does not affect the unperturbed
point cloud (classified correctly by PN before and after AE). The AE cleans the point
cloud perturbed by 3D-Adv and KNN [31,25], which allows PN to predict the correct
class label. However, our AdvPC attack can fool PN before and after AE reconstruction.
Samples perturbed by AdvPC, if passed through the AE, transform into similar looking
objects from different classes (Chair looks similar to Toilet).

data distribution and optimize solely for the network. For completeness, we tried
replacing the AE with other 3D generative models from [1] in our AdvPC attack,
and we tried to use the learning approach in [19,20] instead of optimization, but
the attack success was less than satisfactory in both cases (refer to supplement).

6 Conclusions

In this paper, we propose a new adversarial attack for 3D point clouds that
utilizes a data adversarial loss to formulate network-transferable perturbations.
Our attacks achieve better transferability to four popular point cloud networks
than other 3D attacks, and they improve robustness against popular defenses.
Future work would extend this attack to other 3D deep learning tasks, such as
detection and segmentation, and integrate it into a robust training framework
for point cloud networks.
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A Background on Point Cloud Distances

We define a point cloud X € RV¥*3 as a set of N 3D points, where each
point x; € R3 is represented by its 3D coordinates (z;,¥;,2). In this work,
we focus solely on the perturbations of the input. This means we modify each
point x; by a perturbation variable. Formally, we define the perturbed point set
X' =X + A, where A € RV*3 is the perturbation parameter we are optimizing
for. Consequently, each pair (x;,x}) are in correspondence.

A.1 Trivial Distances (£p)

The most commonly used distance metric in adversarial attacks in the image do-
main is £,. Unlike image domain where every pixel corresponds to the perturbed
pixel in adversarial attacks, in point clouds adversarial attacks by adding, remov-
ing, or transforming the point cloud destroys the correspondence relationship
to the unperturbed sample. Hence, it becomes infeasible to accurately calculate
the ¢, metric for the attack. In our paper, we focus on adversarial perturbations,
which preserves the matching between the unperturbed sample and the perturbed
sample. This property of preservation of matching points allows us to measure
the ¢, norms of the attack exactly, which allow for standard evaluation similar
to the one in the image domain.Here we assume the two point-sets are equal in
size and are aligned , 7.e. forx; € X |, x,=x;+46;,i€1,2,..,N

Dy, (X, X) = (Z ||5i||5> (7)

For our attacks, we use the 5 and s distances, defined in (8) and (9)

respectively. The /5 distance measures the energy of the perturbation, while £,
represents the maximum allowed perturbation of each d; € A.
{5 distance,. The /5 measures the energy of the perturbation performed on the
unperturbed point cloud . Its calculation is similar to calculating the Frobenius
norm of the matrix X that represent the point set perturbation variable A such
that each row of X is a point §; € A. The ¢y distance between two point sets
can be measured as follows

Dy, (X, X") = (Z ||5i||§> = [|1Allg (®)

l~, distance,. The /., represents the max allowed perturbation at any dimension
to every single point §; in the perturbation set A . This distance between two
point sets can be measured as follows :

Dy, (X, X') = max [|6i]| (9)
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A.2 Non-trivial Distances

Other point cloud distances that are commonly used in the literature do not
require the two sets to be in a known correspondence (like the strict £,). These
distance metrics include the following: Chamfer Distances, Hausdorff Distance,
and Earth Mover Distance. In what follows, we formally present each of these
metrics.

Chamfer Distance (CD). This is a common distance to compare 2 point sets.
CD measures the average distance between closest point pairs of 2 different point
clouds. We define CD in Eq (10).

1 . 2
Dep (X, X') = - ;pég(nxi—xiuz (10)

Hausdorff distance (HD). With HD, we compute the largest distance in the
set of containing x € X and its closest point x' € X’. We define HD as follows:

Dy (X, &X') = max mln |Ix; —x’||2 (11)
X EX! %X, €

Earth Mover Distance (EMD). The EMD measures the total effort performed
in the optimal transport scheme that transforms the first point set to the other.
It is defined as follows:

Denp (X, X i an B(x) |2, (12)

where ¢ : X — X’ is a bijection transform.
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B Owur Full Formulation

The pipeline of AdvPC is illustrated in Fig. 9. It consists of an Auto-Encoder
(AE) G, which is trained to reconstruct 3D point clouds, and a point cloud
classifier F. We seek to find a perturbation variable A added to the input X’ to
fool F before and after it passes through the AE for reconstruction. The setup
makes the attack less dependent on the victim network and more dependent on
the data (leveraged by the AE). As such, we expect this strategy to generalize to
different networks. Next, we describe the main components of our pipeline: 3D
point cloud input, AE, and point cloud classifier, and then we present our attack
setup and loss.

B.1 AdvPC Attack Pipeline

3D Point Clouds (X). We define a point cloud X € RV*3 as a set of N 3D
points, where each point x; € R? is represented by its 3D coordinates (z;, y;, 2;).
Point Cloud Networks (F). We focus on 3D point cloud classifiers with a
feature max pooling layer as detailed in Eq (13), where Ay, and heony are MLP
and Convolutional (1 x 1 or edge) layers respectively. This produces a K-class
classifier F.

F(X) = hmlp(glgﬁ, {hconv (xi)}) (13)

Here, F : RV>*3 — RE produces the logits layer of the classifier with size K. For
our attacks, we take F to be one of the following widely used networks in the
literature: PointNet [21], PointNet++ [22] in single-scale form (SSG) and multi-
scale form (MSG), and DGCNN [29]. Section G.2 delves deep into the differences
between them in terms of their sensitivities to adversarial perturbations.

Point Cloud Auto-Encoder (G). An AE learns a representation of the data
and acts as an effective defense against adversarial attacks. It ideally projects a
perturbed point cloud onto the natural manifold of inputs. Any AE architecture
in point clouds can be used in our pipeline, but we select the one in [1] because of
its simple structure and effectiveness in recovering from adversarial perturbation.
The AE G consists of an encoding part, gencode : RV — RY (similar to Eq
(13)), and an MLP decoder, g, : R? — RY*3_ to produce a point cloud. It
can be described formally as: G(.) = gmip (gemode(.)) We train the AE with
the Chamfer loss as in [1] on the same data used to train F, such that it can
reliably encode and decode 3D point clouds. We freeze the AE weights during the
optimization of the adversarial perturbation on the input. We show in Section F
how the AE acts as an effective defense against previous point cloud adversarial
perturbations. Since the AE learns how naturally occurring point clouds look like,
the gradients updating the attack, which is also tasked to fool the reconstructed
sample after the AE, actually become more dependent on the data and less on
the victim network. The enhanced data dependency of our attack results in the
success of our attacks on unseen transfer networks besides the success on the
victim network. As such, the proposed composition allows the crafted attack
to successfully attack the victim classifier, as well as, fool transfer classifiers
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perturbation regular adversarial loss (before AE)
A data adversarial loss (after AE)
erturbed i
ot o ponicloud  auo-encoder (AE)  RiEEned
incorrect
G F = class

Fig.9: AdvPC Attack Pipeline: We optimize for the constrained perturbation
variable A to generate the perturbed sample X’ = X + A. The perturbed sample fools a
trained classifier F (i.e. F(X') is incorrect), and at the same time, if the perturbed sample
is reconstructed by an Auto-Encoder (AE) G, it too fools the classifier (i.e. F(G(X’))
is incorrect). The AdvPC loss for network F is defined in Eq (22) and has two parts:
network adversarial loss (purple) and data adversarial loss (green). Dotted lines are
gradients flowing to the perturbation variable A.

that operate on a similar input data manifold. Furthermore, since many of the
available defenses rely on natural statistics of 3D point clouds [38], we show that
attacking the classifier after AE reconstruction can also lead to perturbations
resilient to these defenses.

B.2 AdvPC Attack Loss

Soft Constraint Loss. In AdvPC attacks, like the ones in Fig. 10, we focus
solely on perturbations of the input. We modify each point x; by a an addictive
perturbation variable §;. Formally, we define the perturbed point set X’/ =
X + A, where A € RN¥*3 is the perturbation parameter we are optimizing
for. Consequently, each pair (x;,x}) are in correspondence. Adversarial attacks
are commonly formulated as in Eq (14), where the goal is to find an input
perturbation A that successfully fools F into predicting an incorrect label ¢,
while keeping X’ and X close under distance metric D: RV*3 x RN*3 — R.

mAin DX, X))  st. {argmax F(X’)l} =t (14)

?

The formulation in Eq (14) can describe targeted attacks (if ¢ is specified
before the attack) or untargeted attacks (if ¢’ is any label other than the true
label of X). We adopt the following choice of ¢’ for untargeted attacks: ¢’ =
[arg max; sqye F (X' );]-We present the results of both targeted and untargeted
attacks in this supplementary. As pointed out in [4], it is difficult to directly solve
Eq (14). Instead, previous works like [31,25] have used the well-known C&W
formulation, giving rise to the commonly known soft constraint attack:

min fir (F(X") + A D (X, ") (15)
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where D (X, X’) can be any of the distances proposed in Eq (8,10,12), while
fv (F(X")) is the targeted adversarial loss function defined on the network F to
move it to target ¢’ as in Eq (16).

fo (F(X')) = max (H;éaﬁ( (F(x'),) —F(x"), + Ii,O) , (16)
where £ is a loss margin. The 3D-Adv attack [31] uses ¢ for D (X, X’) while
KNN attack [25] uses Chamfer Distance.

Hard Constraint Loss. An alternative to Eq (14) is to put D(X,X’) as a

hard constraint, where the objective can be minimized using Projected Gradient
Descent (PGD) [11,16] as follows.

m&n fr (F(X) st DX, X)<e (17)

Using a hard constraint sets a limit to the amount of added perturbation in
the attack. This limit is defined by € in Eq (17). Having this bound ensures fair
comparisons between different attacks schemes. We can do these comparisons by
measuring the effectiveness of these attacks at different levels of €. Using PGD,
the above optimization in Eq (17) with £, distance Dy, (X', X’) can be solved by
iteratively projecting the perturbed sample onto the £, sphere of size €, such
that:

Ay =11, (A; =V a, fr (F(X')) ) (18)

Here, I, (A, €,) projects the perturbation A onto the ¢, sphere of size €,, and 7

is a step size. The two most commonly used £, distance metrics in the literature

are fo, which measures the energy of the perturbation, and ¢, which measures

the maximum point perturbation of each d; € A. Our experiments use the {5y

distance defined as in Eq (8). while the projection of A onto the ¢s sphere of
size €5 is: .
2

Lae) = AT e 2 1)

On the other hand, the /., projection formulation is as follows:
I (A ex) =SAT._(d;), V€ A, (20)

here SAT (;) is the element-wise saturation function that takes every element
of vector ¢; and limit its range in [—(, (].

Data Adversarial Loss. The objectives in Eq (14, 17) focus solely on the
network F. We also want to add more focus on the data in crafting our attacks. We
do so by fooling F using both the perturbed input X’ and the AE reconstruction
G(X"). Our new objective becomes:

min D(X,X') st [argmax F(X'),] =t"; [argmax F(G(X'));] =t"
(21)

K2 K2

Here, t” is any incorrect label t” # argmax; F (X), and t’ is just like Eq (14).

The second constraint ensures that the prediction of the perturbed sample after
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the AE differs from the true label of the unperturbed sample. Similar to Eq (14),
this objective is hard to optimize, so we follow similar steps as in Eq (17) and
optimize the following objective for AdvPC using PGD (using £, as the distance
metric):

min (1 —7) fo (F(X)) +7 fur (F(G(X)) st Dy, (X, X) <ep  (22)

Here, f is as in Eq (16), while ~ is a hyper-parameter that trades off the attack’s
success before and after the AE . When 7 = 0, the formulation in Eq (22) becomes
Eq (17).. We use PGD to solve Eq (22) as follows.

Avr = 1, (A =01 =7)Va, fu(F(X))

(23)
— 117 Va, fr(F(GA)), )
Where 11, is the projection to ¢, as in Eq (19,20)

We follow the same procedure as in [31] when solving the optimization in
Eq (22) by keeping a record of any A that satisfies the constraints in Eq (21)
and by trying different initializations for A. If we achieve the constraints in Eq
(21) in one of the optimizations’ initializations, we try smaller hard norms in the
following initialization in order to find a better solution ( smaller norm). The is
the exactly the Binary Search followed by [31] to find the best hyperparameter A
in Eq (15) that will result in the smallest norm perturbation that succeeds in
the attack on that specific sample.
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C Qualitative Results

airplane v/ airplane v/ bottle v/

PN++ (SSG): DGCNN: PN PN++ (MSG): PN: PN:
bookshelf % bottle % table % monitor ¥ airplane % vase %
Fig. 10: Examples of AdvPC Targeted Attacks: Adversarial attacks are generated
for victim networks PointNet, PointNet ++ (MSG/SSG) and DGCNN using AdvPC.
The unperturbed point clouds are in black (top) while the perturbed examples are in

blue (bottom). The network predictions are shown under each point cloud. The wrong
prediction of each perturbed point cloud matches the target of the AdvPC attack.
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PN++ (SSG): PN: PN++ (MSG) PN: PN++ (SSG): DGCNN:
sofa % stand % sofa % bench % sofa % sofa %

Fig. 11: Examples of AdvPC Untargeted Attacks: Adversarial attacks are gen-
erated for victim networks PointNet, PointNet ++ (MSG/SSG) and DGCNN using
AdvPC. The unperturbed point clouds are in black (top) while the perturbed examples
are in blue (bottom). The network predictions are shown under each point cloud.
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D Experiments Setup

D.1 Dataset and Networks

We use ModelNet40 [30] to train the classifier network (F) and the AE network
(G), as well as test our attacks. ModelNet40 contains 12,311 CAD models from
40 different classes. CAD models are divided into 9,843 for training and 2,468
for testing. Similar to previous work [38,31,37], we sample 1,024 points from
each object. We train the F victim networks: PointNet[21], PointNet++ in both
Single-Scale (SSG) and Multi-scale (MSG) [22] settings, and DGCNN [29]. For a
fair comparison, we adopt the subset of ModelNet40 detailed in [31] to perform
and evaluate our attacks against their work (we call this the attack set). In the
attack set, 250 examples are chosen from 10 ModelNet40 classes. In untargeted
attacks we only perform the attack once per test sample and report the average
results. However, in targeted attacks (like the ones in Section H) we evaluate the
attacks on all the possible targets for each sample and report the average results
as followed by c[31].

D.2 Adversarial Attack Methods

We compare AdvPC against the state-of-the-art baselines 3D-Adv [31] and KNN-
Attack [25]. For all attacks, We use Adam optimizer [10] with learning rate
n = 0.01, and perform 2 different initializations for the optimization of A (as
followed by [31]). The number of iterations for the attack optimization for all
the networks is 200. We set the loss margin x = 30 in Eq (16) for both 3D-Adv
[31] and AdvPC and x = 15 for KNN-Attack [25] (as they suggest in their
paper). For other hyperparameters of [31,25], we follow what they report in their
works. We pick v = 0.25 in Eq (22) for AdvPC because it strikes a balance
between the success of the attack and its transferability (refer to Section G.1 for
details). In all of the attacks, we follow the same procedure as [31], where the
best attack that satisfies the objective during the optimization is reported. In this
supplementary, we perform both the £, and £5 modes of attacks for the baselines
and for AdvPC. For fair comparisons between the attack methods on the same
norm-budgets, we add the following to all the attacks. For /., attacks, we add
the hard projection IT, (A, €x) (from Eq (20), while for {2 attack, we add the
hard projection IT (A, €3) (from Eq (19). This insures that all the attacks have
the same norm-budgets e, or ez ( depending on the attack mode).

D.3 Transferability

For the constrained /., metric, we measure their success rate at different norm-
budgets €, taken to be in the range [0,0.75], whereas norm-budgets s is taken
in the range [0, 7] . These ranges are chosen because they enables the attacks to
reach 100% success on the victim network, as well as offer an opportunity for
transferability to other networks. We compare AdvPC against the state-of-the-art
baselines [31,25] under these norm-budgets (e.g. see Fig. 13,12). The exact norms
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used for e, and ey are {0.01,0.04,0.05,0.1,0.18,0.28,0.35,0.45,0.6,0.75} and
{0.1,0.22,0.48,0.72,1.0,1.5,1.8,2.8,4.0, 7.0} respectively. At exactly e, = €3 = 0,
we get the classification accuracies on unperturbed samples for networks PN,
PN++(MSG), PN++(SSG) and DGCNN to be .92.8%, 91.5%, 91.5%, and 93.7%
respectively. To measure the success of the attack, we measure the percentage of
samples out of all attacked samples that the victim network misclassified. We
also measure transferability from each victim network to the transfer networks.
For each pair of networks, we optimize the attack on one network (victim) and
measure the success rate of this optimized attack when applied as input to the
other network (transfer). We report these success rates for all network pairs. No
defenses are used in the transferability experiment. All the attacks performed in
this section are untargeted attacks (following the convention for transferability
experiments [31]). The results are reported in Sections E.1,E.2, and E.3

D.4 Attacking the Defenses

We also analyze the success of our attacks against point cloud defenses. We
compare AdvPC attacks and the baselines [31,25] against several defenses used
in the point cloud literature: SOR, SRS, DUP-Net [38], and Adversarial Training
[31]. We also add a newly trained AE (different from the one used in the AdvPC
attack) to this list of defenses. For SRS, we use a drop rate of 10%, while in SOR,
we use the same parameters proposed in [38]. We train DUP-Net on ModelNet40
with an up-sampling rate of 2. For Adversarial Training, all four networks are
trained using a mix of the training data of ModelNet40 and adversarial attacks
generated by [31]. We always report the success rate as 1-accuracy of the victim
networks on the perturbed data for that specific norm-budget. The results for
untargeted attacks (¢ and f3) are reported in Section F, while for targeted
attacks, the defense results (£ and f3) are reported in Section H.
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E Full Transferability Results

E.1 Transferability on Specific Norms

- - oo = 0.18 €00 = 0.45
Victim PN+ PN4+ PN++PN++
Attack |PN DGCNN|PN DGCNN
Network ac (MSG) (SSG) (MSG) (SSG)
3D-Adv [31] [100 84 104 68 |100 88 9.6 8.0
PN KNN[25] [100 96 108 60 [100 9.6 84 6.4

AdvPC (Ours)|98.8 20.4 27.6 22.4 [98.8 18.0 26.8 20.4
3D-Adv [31] | 6.8 100 28.4 11.2 7.2 100 29.2 11.2

PN
(M;-G-ig KNN [25] | 6.4 100 22.0 8.8 6.4 100 23.2 7.6
AdvPC (Ours)[13.2 97.2 54.8 39.6 [18.4 98.0 58.0 39.2
- 31 . . 1 . 2 104 1 2
PNHE U (64 02 0 o4 [6s 76 100 60
(SSG) ’ ) i ) ) : ’

AdvPC (Ours)|12.0 27.2  99.2 22.8 [14.0 30.8 99.2 27.6

3D-Adv [31] | 9.2 11.2  31.2 100 9.6 128 30.4 100
DGCNN KNN [25] 72 9.6 14.0 99.6 6.8 10.0 11.2 99.6
AdvPC (Ours)|19.6 46.0 64.4 94.8 [32.8 48.8 64.4 97.2

Table 3: Transferability of Attacks under {., Norms: We use norm-budgets (max
¢ norm allowed in the perturbation) of eoc = 0.18 and €5 = 0.45 . All the reported
results are the untargeted Attack Success Rate (higher numbers are better attacks).
Bold numbers indicate the most transferable attacks. Our attack consistently achieves
better transferability than the other attacks for all networks, especially on DGCNN
[29]. For reference, the classification accuracies on unperturbed samples for networks
PN, PN++(MSG), PN++(SSG) and DGCNN are 92.8%, 91.5%, 91.5%, and 93.7%,
respectively.
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- - €2 = 1.8 € = 40
Victim PN++PN4+ PN++PN++
Attack |PN DGCNN|PN DGCNN
Network ac (MSG) (SSG) (MSG) (SSG)
3D-Adv [31] [100 84 88 72 100 76 9.6 6.0
PN KNN [25] |100 9.2 84 72 [100 88 88 7.6
AdvPC (Ours)[98.0 17.2 28.0 22.0 |988 16.0 19.6 15.6
pNty ODAAVBII[68 100 324 148 [76 100 280 140
(sq) KNN)|72 100 28 84|68 100 228 84
AdvPC (Ours) 13.2 94.8 53.2 33.2 [22.8 984 55.2 44.0
“Adv [31] | 6. . . . . .
pNty ODAAVBII[68 88 100 80 [72 104 100 7.2
ssq) KNN[3] 68 88 100 76 |64 84 100 6.4
AdvPC (Ours)[10.8 27.6 964  26.8 |10.0 25.6 988  23.6
3D-Adv [31] [108 144 39.6 100 |10.8 140 324 100
DGCNN KNN [25] |72 112 136 100 |68 84 112  99.6
AdvPC (Ours)[20.8 32.4 52.4 852 [38.8 48.4 63.2  98.8

Table 4: Transferability of Attacks under /> Norms: We use norm-budgets (max
¢y norm allowed in the perturbation) of e = 1.8 and ez = 4.0 . All the reported
results are the untargeted Attack Success Rate (higher numbers are better attacks).
Bold numbers indicate the most transferable attacks. Our attack consistently achieves
better transferability than the other attacks for all networks, especially on DGCNN
[29]. For reference, the classification accuracies on unperturbed samples for networks
PN, PN++(MSG), PN++(SSG) and DGCNN are 92.8%, 91.5%, 91.5%, and 93.7%,

respectively.
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Transferability on Different Norms
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Fig. 12: Transferability Across Different e¢., Norm-Budgets: Here, the attacks
are optimized using different e norm-budgets. We report the attack success on all
victim networks and the success of these attacks on each transfer network. We note
that our AdvPC transfers better to the other networks across different €., as compared
to the baselines 3D-adv[31] and KNN attack [25].
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Fig. 13: Transferability Across Different e Norm-Budgets: Here, the attacks
are optimized using different ez norm-budgets. We report the attack success on all
victim networks and the success of these attacks on each transfer network. We note
that our AdvPC transfers better to the other networks across different €2 as compared
to the baselines 3D-adv([31] and KNN attack [25].
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E.3 Transferability Matrices

3D - Adv KNN AdvPC

PN++ PN++ PN++ PN++ PN++ PN++
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Fig. 14: Transferability Matrix for {..: Visualizing the overall transferability for
3D-adv [31] (left), KNN attack [25](middle), and our AdvPC (right). Elements in the
same row correspond to the same victim network used in the attack, while those in the
same column correspond to the network that the attack is transferred to. Each matrix

element measures the average success rate over the range of e for the transfer network.

We expect the diagonal elements of each transferability matrix (average success rate on
the victim network) to have high values, since each attack is optimized on the same
network it is transferred to. More importantly, brighter off-diagonal matrix elements
indicate better transferability. We observe that our proposed AdvPC attack is more
transferable than the other attacks and that DGCNN is a more transferable victim
network than the other point cloud networks. The transferability score under each matrix
is the average of the off-diagonal matrix values, which scores overall transferability for
an attack.
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3D - Adv KNN AdvPC
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Fig. 15: Transferability Matrix for ¢2: Visualizing the overall transferability for 3D-
adv [31] (left), KNN attack [25](middle), and our AdvPC (right). Elements in the same
row correspond to the same victim network used in the attack, while those in the same
column correspond to the network that the attack is transferred to. Each matrix element
measures the average success rate over the range of ez for the transfer network. We
expect the diagonal elements of each transferability matrix (average success rate on the
victim network) to have high values, since each attack is optimized on the same network
it is transferred to. More importantly, brighter off-diagonal matrix elements indicate
better transferability. We observe that our proposed AdvPC attack is more transferable
than the other attacks and that DGCNN is a more transferable victim network than the
other point cloud networks. The transferability score under each matrix is the average
of the off-diagonal matrix values, which scores overall transferability for an attack.
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F Defenses Results (Untargeted Attacks)

F.1 {¢., Defense Results

€00 = 0.18 €00 = 0.45

Defenses 3D-Adv KNN AdvPC | 3D-Adv KNN AdvPC

[31] [25] (ours) [31] [25] (ours)
No defense 100 99.6 94.8 100 99.6 97.2
AE (newly trained) 9.2 10.0 17.2 12.0 10.0 21.2
Adv Training [31] 7.2 7.6 39.6 8.8 7.2 42.4
SOR [38] 188 172  36.8 192 192  32.0
DUP Net [38] 28 28.8 43.6 28 31.2 37.2
SRS [38] 43.2 29.2 80.0 47.6 31.2 85.6

Table 5: Attacking Point Cloud Defenses (/o Untargeted DGCNN): We eval-
uate untargeted attacks using norm-budgets of exc = 0.18 and esc = 0.45 with DGCNN
[29] as the victim network under different defenses for 3D point clouds. Similar to before,
we report attack success rates (higher indicates better attack). AdvPC consistently
outperforms the other attacks [31,25] for all defenses. Note that both the attacks and
evaluations are performed on DGCNN, which has an accuracy of 93.7% without input
perturbations (for reference).

€so = 0.18 €00 = 0.45

Defenses 3D-Adv KNN AdvPC |3D-Adv KNN AdvPC

[31] [25] (ours) [31] [25] (ours)
No defense 100 100 99.2 100 100 99.2
AE (newly trained) 14.8 13.6 17.6 12.0 13.2 19.6
Adv Training [31] 12.0 7.6 76.4 11.2 10.8 76.4
SOR [38] 204 184  51.2 188 160  51.2
DUP Net [38] 18.0 16.4 33.6 16.8 18.4 38.8
SRS [38] 53.2 40.8 90.4 49.2 42.4 89.6

Table 6: Attacking Point Cloud Defenses (/- Untargeted PointNet++ SSG):
We evaluate untargeted attacks using norm-budgets of exc = 0.18 and e = 0.45 with
PointNet++ SSG [22] as the victim network under different defenses for 3D point
clouds. Similar to before, we report attack success rates (higher indicates better
attack). AdvPC consistently outperforms the other attacks [31,25] for all defenses. Note
that both the attacks and evaluations are performed on PointNet++ SSG, which has
an accuracy of 91.5% without input perturbations (for reference).
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€00 = 0.18 €00 = 0.45

Defenses 3D-Adv KNN AdvPC | 3D-Adv KNN AdvPC

[31] [25] (ours) [31] [25] (ours)
No defense 100 100 97.2 100 100 98.0
AE (newly trained) 13.2 10.0 20.0 12.4 12.0 18.4
Adv Training [31] 6.8 26.0 36.4 8.0 31.2 32.8
SOR [38] 21.6 260  53.2 244 340 424
DUP Net [38] 29.6 27.6 43.2 24.8 30.8 42.0
SRS [38] 43.6 45.6 80.4 41.2 50.0 78.8

Table 7: Attacking Point Cloud Defenses ({», Untargeted PointNet+-+
MSG): We evaluate untargeted attacks using norm-budgets of esc = 0.18 and €s = 0.45
with PointNet++ MSG [22] as the victim network under different defenses for 3D point
clouds. Similar to before, we report attack success rates (higher indicates better attack).
AdvPC consistently outperforms the other attacks [31,25] for all defenses. Note that
both the attacks and evaluations are performed on PointNet++ MSG, which has an
accuracy of 91.5% without input perturbations (for reference).

€00 = 0.18 €0 = 0.45

Defenses 3D-Adv KNN AdvPC | 3D-Adv KNN AdvPC

[31] [25] (ours) [31] [25] (ours)
No defense 100 100 98.8 100 100 98.8
AE (newly trained) 8.0 7.6 11.6 8.0 7.6 12.4
Adv Training [31] 8.0 8.4 41.6 8.4 9.2 44.8
SOR [38] 16.0 15.6 29.2 16.8 15.2 28.4
DUP Net [38] 100 104 124 11.2 84  11.2
SRS [38] 80.8 81.6 97.6 85.6 77.6 97.2

Table 8: Attacking Point Cloud Defenses (fo Untargeted PointNet): We
evaluate untargeted attacks using norm-budgets of eoc = 0.18 and e, = 0.45 with
PointNet [21] as the victim network under different defenses for 3D point clouds. Similar
to before, we report attack success rates (higher indicates better attack). AdvPC
consistently outperforms the other attacks [31,25] for all defenses. Note that both the
attacks and evaluations are performed on PointNet, which has an accuracy of 92.8%
without input perturbations (for reference).
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F.2 /{5 Defense Results

€2 =1.8 €2 = 4.0

Defenses 3D-Adv KNN AdvPC | 3D-Adv KNN AdvPC

[31] [25]  (ours) [31] [25]  (ours)
No defense 100 100 85.2 100 99.6 98.8
AE (newly trained) 9.6 9.6 11.6 10.8 10.0 21.6
Adv Training [31] 16.8 37.6 48.0 8.0 13.2 40.8
SOR [38] 22.0 29.2 36.8 18.0 20.4 27.2
DUP Net [38] 34.8 36.0 36.8 28.8 28.4 31.2
SRS [38] 63.6 61.6 76.0 50.8 34.0 88.4

Table 9: Attacking Point Cloud Defenses ({2 Untargeted DGCNN): We eval-
uate untargeted attacks using norm-budgets of ez = 1.8 and e = 4.0 with DGCNN [29]
as the victim network under different defenses for 3D point clouds. Similar to before,
we report attack success rates (higher indicates better attack). AdvPC consistently
outperforms the other attacks [31,25] for all defenses. Note that both the attacks and
evaluations are performed on DGCNN, which has an accuracy of 93.7% without input
perturbations (for reference).

€2 =1.8 €2 = 4.0

Defenses 3D-Adv KNN AdvPC | 3D-Adv KNN AdvPC

[31] [25] (ours) [31] [25] (ours)
No defense 100 100 96.4 100 100 98.8
AE (newly trained) 13.2 14.0 18.0 13.6 14.0 17.6
Adv Training [31] 20.8 19.2 74.4 10.8 11.6 71.2
SOR [38] 24.8 17.2 49.6 17.6 14.4 48.4
DUP Net [38] 184 152  33.6 180 160  32.8
SRS [38] 60.4 55.2 86.4 50.8 42.4 89.2

Table 10: Attacking Point Cloud Defenses ({2 Untargeted PointNet++ SSG):
We evaluate untargeted attacks using norm-budgets of e2 = 1.8 and ez = 4.0 with
PointNet++ SSG [22] as the victim network under different defenses for 3D point
clouds. Similar to before, we report attack success rates (higher indicates better
attack). AdvPC consistently outperforms the other attacks [31,25] for all defenses. Note
that both the attacks and evaluations are performed on PointNet++ SSG, which has
an accuracy of 91.5% without input perturbations (for reference).
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€2 =1.8 €2 =4.0

Defenses 3D-Adv KNN AdvPC | 3D-Adv KNN AdvPC

[31] [25] (ours) [31] [25] (ours)
No defense 100 100 94.8 100 100 98.4
AE (newly trained) 13.2 11.2 18.4 14.8 9.6 20.0
Adv Training [31] 18.8 46.0 48.4 8.0 34.4 36.8
SOR [38] 328 372 49.2 192 372  47.2
DUP Net [38] 31.6 33.6 42.8 26.8 32.8 40.4
SRS [38] 63.6 64.8 83.6 44.8 49.6 80.0

Table 11: Attacking Point Cloud Defenses ({2 Untargeted PointNet+-+
MSG): We evaluate untargeted attacks using norm-budgets of e = 1.8 and €2 = 4.0
with PointNet++ MSG [22] as the victim network under different defenses for 3D
point clouds. Similar to before, we report attack success rates (higher indicates better
attack). AdvPC consistently outperforms the other attacks [31,25] for all defenses. Note
that both the attacks and evaluations are performed on PointNet++ MSG, which has
an accuracy of 91.5% without input perturbations (for reference).

€2 = 1.8 €2 = 4.0

Defenses 3D-Adv KNN AdvPC | 3D-Adv KNN AdvPC

[31] [25] (ours) [31] [25] (ours)
No defense 100 100 98.0 100 100 98.8
AE (newly trained) 7.6 7.6 13.2 8.0 7.6 12.8
Adv Training [31] 9.2 10.0 43.6 8.8 8.4 44.0
SOR [38] 20.0 14.4 27.6 16.4 15.2 25.6
DUP Net [38] 12.0 92  15.6 10.4 92  11.6
SRS [38] 88.8 84.0 96.4 86.8 84.4 98.4

Table 12: Attacking Point Cloud Defenses ({2 Untargeted PointNet): We
evaluate untargeted attacks using norm-budgets of €2 = 1.8 and €2 = 4.0 with PointNet
[21] as the victim network under different defenses for 3D point clouds. Similar to before,
we report attack success rates (higher indicates better attack). AdvPC consistently
outperforms the other attacks [31,25] for all defenses. Note that both the attacks and
evaluations are performed on PointNet, which has an accuracy of 92.8% without input
perturbations (for reference).
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G Analysis of the results

We perform several analytical experiments to explore further the results obtained
in so far. We perform several analytical experiments to further explore the results
obtained in Sections E.1,E.2)E.3 and F. We first study the effect of different
factors that play a role in the transferability of our attacks. We also show some
interesting insights related to the sensitivity of point cloud networks and the
effect of the AE on the attacks.

G.1 Ablation Study (hyperparameter )

Here, we study the effect of v used in Eq (22) on the performance of our attacks.

While varying « between 0 and 1, we record the attack success rate on the
victim network and report the transferability to all of the other three transfer
networks (average success rate on the transfer networks). We present our results
(averaged over all €, norm-budgets) in Fig. 16 and in Fig. 17 (averaged over all €5
norm-budgets) for the four victim networks. One observation is that, while adding
the AE loss with «v > 0 indeed improves transferability, it tends to deteriorate

the success rate. We pick v = 0.25 in our experiments to balance success and
transferability.

Success Transferability
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;\3 30 —e— PN++(SSG)
;80 - —e— DGCNN
S Z25 N
« 8
@ 70 5 20
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Hyperparameter y Hyperparameter y

Fig. 16: Ablation Study in f.: Studying the effect of changing AdvPC hyperpa-
rameter () on the success rate of the attack (left) and on its transferability (right).
The transferability score reported for each victim network is the average success rate
on the transfer networks averaged across all different norm-budgets €. We note that
as 7 increases, the success rate of the attack on the victim network drops, and the
transferability varies with v. We pick v = 0.25 in all of our experiments.

G.2 Network Sensitivity to Point Cloud Attacks

Fig. 18 and Fig. 19 plot the sensitivity of the various networks when they are
subject to input perturbations of varying norm-budgets €5, and €5 respectively.
We measure the classification accuracy of each network under our AdvPC attack
(v = 0.25), 3D-Adv [31], and KNN attack [25]. We observe that DGCNN [29]
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Fig. 17: Ablation Study in ¢5: Studying the effect of changing AdvPC hyperparameter
(v) on the success rate of the attack (left) and on its transferability (right). The
transferability score reported for each victim network is the average success rate on
the transfer networks averaged across all different norm-budgets e2. We note that
as v increases, the success rate of the attack on the victim network drops, and the
transferability varies with . We pick v = 0.25 in all of our experiments.

tends to be the most robust to adversarial perturbations in general. This might
be explained by the fact that the convolution neighborhoods in DGCNN are
dynamically updated across layers and iterations. This dynamic behavior in
network structure may hinder the effect of the attack because gradient directions

can change significantly from one iteration to another. This leads to failing attacks
and higher robustness for DGCNN [29].
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Fig. 18: Sensitivity of Architectures in {..: We evaluate the sensitivity of each of
the four networks for increasing norm-budget. For each network, we plot the classifica-
tion accuracy under 3D-Adv perturbation [31] (left), KNN attack [25] (middle), and

our AdvPC attack (right). Overall, DGCNN [29] is affected the least by adversarial
perturbation.

G.3 Effect of the Auto-Encoder (AE)

In Fig. 20, we show an example of how AE reconstruction preserves the details of
the unperturbed point cloud and does not change the classifier prediction. When



AdvPC: Transferable Adversarial Perturbations on 3D Point Clouds
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Fig. 19: Sensitivity of Architectures in f5: We evaluate the sensitivity of each of
the four networks for increasing norm-budget. For each network, we plot the classifica-
tion accuracy under 3D-Adv perturbation [31] (left), KNN attack [25] (middle), and
our AdvPC attack (right). Overall, DGCNN [29] is affected the least by adversarial
perturbation.

a perturbed point cloud passes through the AE, it recovers a natural-looking
shape. The AE’s ability to reconstruct natural-looking 3D point clouds from
various perturbed inputs might explain why it is a strong defense against attacks
in Section F. Another observation from Fig. 20 is that when we fix the target ¢’
and do not enforce a specific incorrect target ¢ (i.e. untargeted attack setting)
for the data adversarial loss on the reconstructed point cloud in the AdvPC attack
(Eq (22)), the optimization mechanism tends to pick t” to be a similar class to
the correct one. For example, a Toilet point cloud perturbed by AdvPC can be
transformed into a Chair (similar in appearance to a toilet), if reconstructed by
the AE. This effect is not observed for the other attacks [31,25], which do not
consider the data distribution and optimize solely for the network.

unperturbed

point cloud

3D-adv [31]

KNN [25]

AdvPC (ours)

before AE after AE

before AE after AE

before AE after AE

before AE after AE

PN: PN: PN: PN: PN: PN: PN: PN:
Toilet v/ Toilet v | Bed 8 Toilet v/ | Bed ¥ Toilet /| Bed ¥ Chair %

Fig. 20: Effect of the Auto-Encoder (AE): The AE does not affect the unperturbed
point cloud (classified correctly by PN before and after AE). The AE cleans the perturbed
point cloud by 3D-Adv and KNN [31,25], which allows PN to predict the correct class
label. However, our AdvPC attack can fool PN before and after AE reconstruction.
Perturbed samples by AdvPC, if passed through the AE, transform into similar looking
objects but from different classes (Chair looks similar to Toilet).
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G.4 Ablation Study on the Losses

We ablate each component of our pipeline and show their effect in our attacks. We
evaluate this components by looking Attack Success Rate (ASR), transferability,
and the final norm obtained under the attack. In theses experiments, we allow
unconstrained attacks as well as constrained attacks. We show the effect of
optimizing using EMD, CD, ¢5, and /.. We show the results on Tables 13,14,15,16
for all the four networks. We observe transferability is better when using hard
constraints. Constraining the attack norm allows the optimization to learn more
from the AE data distribution. The EMD doesn’t work well while the Chamfer
loss is comparable to the £y loss.

Attack Setup Results
soft CD soft EMD soft ¢ hard /. hard /2 AE| CD EMD /( &, ASR TR
v - - - - - 10.15 425 0.12 0.31 100 9.02
v - - - - v 1019 501 013 036 99.69 9.51
- v - - - - | 017 283 023 0.39 6836 9.01
- v - - - v 1016 2.53 025 037 18.04 7.35
- - v - - - 1016 438 0.11 0.31 100 8.92
- - v - - v 1021 522 013 036 100 9.35
- - v - - | 049 1237 0.04 0.55 100 9.16
- - - v - v | 073 13.66 0.07 0.72 96.93 13.14
- - - - v - 1026 741 0.09 038 100 8.87
- - - - v v 1037 735 0.16 048 99.87 11.08

Table 13: Soft

vs Hard on PointNet:

study the effect of every bit of the loss on
the norms , Attack Success Rate (ASR) and Transferability (TR) under unconstrained
setup vs constrained setup in PointNet [21].(écc = 0.1 , €2 = 1.8),A = 1, = 0.5. Please
refer to Section B for details. Bold numbers are the best.
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Attack Setup Results
soft CD soft EMD soft ¢ hard /o hard ¢/ AE| CD EMD /. ¢ ASR TR
v - - - - - | 1.01 25.80 0.19 1.00 99.78 11.57
v - - - - v 1088 2625 0.21 1.15 9569 12.19
- v - - - - 1021 504 023 056 14.58 6.83
- v - - - v 10.07 2.23 0.12 0.20 2.31 6.61
- - v - - - | 1.35  26.58 0.20 0.96 99.96 13.38
- - v - - v | 143 2642 0.22 098 100 16.61
- - - v - - | 371 53.83 0.06 1.84 94.71 18.46
- - - v - v | 253 3878 0.10 1.45 97.64 25.82
- - - - v - 1059 1595 0.10 0.58 100 8.84
- - - - v v 1093 20.08 0.15 0.75 99.20 11.91

Table 14: Soft

best.

vs Hard on PointNet++4 MSG: study the effect of every bit of
the loss on the norms , Attack Success Rate (ASR) and Transferability (TR) under
unconstrained setup vs constrained setup in PointNet++ MSG [22]. (s = 0.18 |
e2 = 1.8),A = 1,7 = 0.5. Please refer to Section B for details. Bold numbers are the

Attack Setup Results
soft CD soft EMD soft /o hard /., hard /o AE| CD EMD /. /> ASR TR
v - - - - - 0.25 9.39 0.07 037 100 7.01
v - - - - v 1025 938 0.08 0.39 99.51 7.17
- v - - - - 0.08 3.71 0.09 0.28 37.20 6.74
- v - - - v 10.07 295 0.10 0.24 4.84 6.52
- - v - - - 0.30 9.90 0.07 0.39 100 6.92
- - v - - v 1028 963 0.07r 0.38 100 7.56
- - v - - 1.20 24.52 0.02 0.83 96.80 7.84
- - - v - v 1080 17.24 0.05 070 100 7.72
- - - v - 0.19 8.08 0.04 0.30 100 6.99
- - - - v v | 046 1242 0.09 050 100 7.44
Table 15: Soft vs Hard on PointNet+-+ SSG: study the effect of every bit of the loss

on the norms , Attack Success Rate (ASR) and Transferability (TR) under unconstrained
setup vs constrained setup in PointNet++ SSG [22].(€és = 0.1 , €2 = 1.8),A = 1, = 0.5.

Please refer to Section B for details. Bold numbers are the best.
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Attack Setup Results
soft CD soft EMD soft ¢ hard /.. hard ¢ AE| CD EMD /. 123 ASR TR
v - - - - - 1.06 3222 020 1.55 6791 10.46
v - - - - v 1071 2503 0.17 118 41.07 9.21
- v - - - - 0.03 247 0.07 0.14 207 7.18
- v - - - v 10.01 1.62 0.01 0.05 0.76 7.21
- - v - - - 2.81 3995 0.28 1.53 99.20 23.23
- - v - - v 1289 4055 031 1.58 96.89 29.91
- - v - - 4.39 5349 0.12 212 86.67 26.22
- - - v - v | 510 5824 0.16 240 83.56 35.59
- - - v - 246 39.85 0.23 145 99.82 23.45
- - - - v v 1282 4319 030 1.63 98.80 33.26
Table 16: Soft vs Hard on DGCNN: study the effect of every bit of the loss on

the norms , Attack Success Rate (ASR) and Transferability (TR) under unconstrained
setup vs constrained setup in DGCNN [29]. (exc = 0.18 , €2 = 2.8),A = 1,4 = 0.5. Please
refer to Section B for details. Bold numbers are the best.
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H Defenses Results (Targeted Attacks)

We note from targeted attack results in Tables 17,18,19,20 that our AdvPC still
outperforms the other baselines in most defenses but fail in some defenses. This
can be explained because the targeted attacks with specific target label ¢’ in
Eq (21) is too strict given that the reconstruction of the AE needs to fool the
classifier to unspecified label ¢ that might be different from t’. This restriction
makes the optimization in Eq (22) very difficult to optimize and hence leads to
less successful attacks.

€00 = 0.18 €0 = 0.45

Defenses 3D-Adv KNN AdvPC |3D-Adv KNN AdvPC

[31] [25] (ours) [31] [25] (ours)
No defense 77.1 77.6 66.4 85.4 80.1 7T
AE (newly trained) 13.1 9.8 16.5 13.9 9.8 18.0
Adv Training [31] 5.1 2.5 6.2 5.2 2.2 5.3
SOR [38] 24.1 25.6 21.9 21.2 26.8 19.2
DUP Net [38] 32.0 30.3 27.2 30.3 36.5 26.7
SRS [38] 34.8 36.2 36.2 31.8 38.7 30.4

Table 17: Attacking Point Cloud Defenses (¢o, Targeted DGCNN): We evalu-
ate targeted attacks using norm-budgets of €oc = 0.18 and €., = 0.45 with DGCNN [29]
as the victim network under different defenses for 3D point clouds. Similar to before, we
report 1 - accuracy (higher indicates better attack). AdvPC consistently outperforms
the other attacks [31,25] for all defenses. Note that both the attacks and evaluations are
performed on DGCNN, which has an accuracy of 93.7% without input perturbations
(for reference).

€00 = 0.18 €co = 0.45

Defenses 3D-Adv KNN AdvPC |3D-Adv KNN AdvPC

[31] [25] (ours) [31] [25] (ours)
No defense 99.5 100 98.3 99.8 100 98.5
AE (newly trained) 13.0 12.9 15.5 12.6 12.8 14.7
Adv Training [31] 9.3 10.3 25.2 5.3 10.7 14.6
SOR [38] 16.9 16.6 18.0 13.5 20.4 15.2
DUP Net [38] 17.3 17.4 18.5 15.8 18.7 16.9
SRS [38] 17.3 17.4 60.8 35.4 51.4 53.0

Table 18: Attacking Point Cloud Defenses (¢ Targeted PointNet++ SSG):
We evaluate targeted attacks using norm-budgets of exc = 0.18 and eo, = 0.45 with
PointNet++ SSG [22] as the victim network under different defenses for 3D point clouds.
Similar to before, we report 1 - accuracy (higher indicates better attack). AdvPC
consistently outperforms the other attacks [31,25] for all defenses. Note that both the
attacks and evaluations are performed on PointNet++ SSG, which has an accuracy of
91.5% without input perturbations (for reference).
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€00 = 0.18 €00 = 0.45

Defenses 3D-Adv KNN AdvPC | 3D-Adv KNN AdvPC

[31] [25] (ours) [31] [25] (ours)
No defense 96.6 99.9 94.7 99.2 99.9 97.6
AE (newly trained) 13.6 12.8 16.7 16.1 12.0 23.2
Adv Training [31] 7.2 3.6 11.8 6.6 3.6 12.7
SOR [38] 32.1 27.1 31.6 23.8 31.3 25.0
DUP Net [38] 36.6 9.6 36.2 27.6 31.3 30.6
SRS [38] 46.1 44.9 57.0 50.3 414 60.3

Table 19: Attacking Point Cloud Defenses (¢, Targeted PointNet++ MSG):
We evaluate targeted attacks using norm-budgets of esc = 0.18 and e = 0.45 with
PointNet++ MSG [22] as the victim network under different defenses for 3D point
clouds. Similar to before, we report 1 - accuracy (higher indicates better attack).
AdvPC consistently outperforms the other attacks [31,25] for all defenses. Note that
both the attacks and evaluations are performed on PointNet++ MSG, which has an
accuracy of 91.5% without input perturbations (for reference).

€oo = 0.18 €00 = 0.45

Defenses 3D-Adv KNN AdvPC | 3D-Adv KNN AdvPC

[31] [25] (ours) [31] [25] (ours)
No defense 100 100 97.4 100 100 98.4
AE (newly trained) 9.9 94 12.6 8.5 0.0 9.7
Adv Training [31] 12.2 14.6 22.0 11.3 28.0 13.2
SOR [38] 11.2 109 107 9.6 4.0 8.6
DUP Net [38] 8.5 9.7 7.8 8.0 9.6 7.8
SRS [38] 70.7 63.8 81.4 52.0 52.0 63.7

Table 20: Attacking Point Cloud Defenses (¢, Targeted PointNet): We evalu-
ate targeted attacks using norm-budgets of €sc = 0.18 and €5 = 0.45 with PointNet [21]
as the victim network under different defenses for 3D point clouds. Similar to before, we
report 1 - accuracy (higher indicates better attack). AdvPC consistently outperforms
the other attacks [31,25] for all defenses. Note that both the attacks and evaluations are
performed on PointNet, which has an accuracy of 92.8% without input perturbations
(for reference).
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I Other Tried Approaches (Less Successful)

I.1 Point Cloud GAN:

We try to use the -GAN and r-GAN from [1] to create more natural attacks
to the input point clouds. We try to leverage the discriminator signal of both
r-GAN and -GAN to differentiate between the perturbed point clouds and the
original samples. The idea is that if the trained discriminator can distinguish
between the unperturbed and attacked samples, then we add the discriminator
loss as an additional loss to the attack objective in Eq (17) to craft a perturbation
that passes the trained discriminator test of natural input. We train I-GAN and
r-GAN with the same procedure advised by [1] and on the same data as our
AE G. However, as Fig. 21 illustrates, neither -GAN nor-GAN were able to
distinguish between the unperturbed samples and the perturbed samples using
the attack from [31]. This disappointing result leads us to abandon the approach
in favor of the AE optimization (which works).

Latent GAN Distribution Data Raw GAN Distribution Data
10 1 -
—— Original data n 10 | — Original data
8 Soft L, o N Soft L,
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Fig.21: GAN instead of AE: We tried to use -GAN and r-GAN from [1] as natural
priors for AdvPC attacks instead of the AE. The discriminators of Both -GAN and
r-GAN could not discriminate between the original data and the attacks data by
soft £2 loss or Hard fo. We show the histogram distribution of discriminator scores
of the original data and attacked data using I-GAN discriminator (left) and r-GAN
discriminator (right).

1.2 Learning Approach

Inspired by the success of [19,20] in learning to attack, we tried to learn the
AE G that produces the desired perturbed point cloud X’ by optimizing the
output of the AE by the soft adversarial loss. To achieve this, the AE should
output points clouds that are close as possible to the input point cloud X’ (by
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the Chamfer soft loss as in Eq (15)) and also the output of the AE should fool
the classifier F. We note that because of the nature of point cloud, we could not
project the output of the AE back to the original sample with some norm, as
performed by [19], and hence we used the soft Chamfer loss instead. We train the
AE to perform untargeted and targeted attacks on the training set of ModelNet40
[30] and evaluate the adversary G on the test set of ModelNet. We report the
results of targeted and untargeted attacks in Table 21. We note that for the
untargeted attacks that indeed succeed, the final Chamfer Distance is way bigger
than the ones obtained by optimization (see Tables 13). This might be attributed
to the difficulty of learning an attack that works under varying distance penalties,
unlike the [19] where the adversarial objective is hardly conditioned on a constant
distance between the attacked image and the original image.

Loss Acp Learning rate U;Zi;iizzd/ T];:rz::}lfsg Accuracy ](;I;Si:lrfsz
Relativistic 0 0.0001 Untargeted 15 6.375 2.6161
Relativistic 1 0.0001 Untargeted 15 5.0833 2.4832
Relativistic 3 0.0001 Untargeted 13 9.9167 0.024229
Relativistic 10 0.0001 Untargeted 13 8.9583 0.022948
Relativistic 30 0.0001 Untargeted 13 10.125 0.021558
Relativistic 100 0.0001 Untargeted 13 13.625 0.018275
Relativistic 300 0.0001 Untargeted 16 17.875 0.014084
Relativistic 1000 0.0001 Untargeted 13 38.0417 0.09286
Relativistic 0 0.00005 Untargeted 13 9.7083 0.023431
Relativistic 0 0.0001 Targeted 0 81.5 0.005556
Relativistic 0 0.001 Targeted 19 31.875 0.015868

Table 21: The Learning Approach on PointNet: We tried to learn a network to
attack PointNet [21] (approach similar to [19] but on point clouds). While the approach
mildly succeeds on untargeted attacks, the final average Chamfer distance on the
succeeding attacks are much bigger than those obtained by optimization like in Fig. 13.
This implies that the optimization is actually better on point lcouds.
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